Inner ear anatomy is a proxy for deducing auditory capability and behaviour in reptiles and birds.

نویسندگان

  • Stig A Walsh
  • Paul M Barrett
  • Angela C Milner
  • Geoffrey Manley
  • Lawrence M Witmer
چکیده

Inferences of hearing capabilities and audition-related behaviours in extinct reptiles and birds have previously been based on comparing cochlear duct dimensions with those of living species. However, the relationship between inner-ear bony anatomy and hearing ability or vocalization has never been tested rigorously in extant or fossil taxa. Here, micro-computed tomographic analysis is used to investigate whether simple endosseous cochlear duct (ECD) measurements can be fitted to models of hearing sensitivity, vocalization, sociality and environmental preference in 59 extant reptile and bird species, selected based on their vocalization ability. Length, rostrocaudal/mediolateral width and volume measurements were taken from ECD virtual endocasts and scaled to basicranial length. Multiple regression of these data with measures of hearing sensitivity, vocal complexity, sociality and environmental preference recovered positive correlations between ECD length and hearing range/mean frequency, vocal complexity, the behavioural traits of pair bonding and living in large aggregations, and a negative correlation between ECD length/rostrocaudal width and aquatic environments. No other dimensions correlated with these variables. Our results suggest that ECD length can be used to predict mean hearing frequency and range in fossil taxa, and that this measure may also predict vocal complexity and large group sociality given comprehensive datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Therapeutic potential of cell therapy in the repair of hair cells and spiral ganglion neurons: review article

The mammalian cochlea is a highly complex structure which contains several cells, including sensory receptor or hair cells. The main function of the cochlear hair cells is to convert the mechanical vibrations of the sound into electrical signals, then these signals travel to the brain along the auditory nerve. Auditory hair cells in some amphibians, reptiles, fish, and birds can regenerate or r...

متن کامل

Hair cells, hearing and hopping: a field guide to hair cell physiology in the frog.

For more than four decades, hearing in frogs has been an important source of information for those interested in auditory neuroscience, neuroethology and the evolution of hearing. Individual features of the frog auditory system can be found represented in one or many of the other vertebrate classes, but collectively the frog inner ear represents a cornucopia of evolutionary experiments in acous...

متن کامل

Experimental Visualization of Labyrinthine Structure with Optical Coherence Tomography

Introduction:Visualization of inner ear structures is a valuable strategy for researchers and clinicians working on hearing pathologies. Optical coherence tomography (OCT) is a high-resolution imaging technology which may be used for the visualization of tissues. In this experimental study we aimed to evaluate inner ear anatomy in well-prepared human labyrinthine bones.Materials and Methods:Thr...

متن کامل

Effect of replacing cochlea contour with inner ear contour on cochlea dose-volume calculations in conventional 2 dimensional and conformal 3 dimensional radiotherapy of brain

Introduction: Sensorineural hearing loss (SNHL) is one of the possible complications of radiotherapy treatment of brain tumors. The auditory system of patients with brain tumors often is placed inside of radiation field and receives a significant amount of radiation dose resulting in hearing loss. The purpose of this study was to compare contouring and delivery dose to cochlea...

متن کامل

Non-invasive biophysical measurement of travelling waves in the insect inner ear

Frequency analysis in the mammalian cochlea depends on the propagation of frequency information in the form of a travelling wave (TW) across tonotopically arranged auditory sensilla. TWs have been directly observed in the basilar papilla of birds and the ears of bush-crickets (Insecta: Orthoptera) and have also been indirectly inferred in the hearing organs of some reptiles and frogs. Existing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 276 1660  شماره 

صفحات  -

تاریخ انتشار 2009